(2)hellasolar

WEB VIEWER (user manual v5.0)

1. Screen layout 2
2. Loading and navigating the map 3
3. Taking basic data 4
4. Recording points 4
5. Applying filter of annual averages of sun exposure 5
6. Applying filter of monthly percentages of sun exposure 6
7. Analyzing areas of the model 7
8. Getting data of radiation in points 8
9. Getting data of radiation of areas 9
10. Production and environmental data. Power production, Co2 savings, trees planted, homes supplied 10
11. Sharing data and contacting with companies 11
12. Radiation over facades or vertical planes 12
13. Horizon files 14
14. Chart of shadows 15
15. Printing 15
PLUGIN ATLAS OF RADIATION
16. Monthly radiation maps 17
17. Setting up the atlas 18
2.1.Overprinting areas with less than 15% of annual shadows 18
2.2.Chart of Power production and co2 estimations 19
2.3.Chart of average values of global radiation (Kwh/m2día) 19
2.4.Chart of monthly percentages of global radiation 20
2.5.Chart of monthly values of global radiation 20

1. Screen layout

Tris	Dencretion	
Promets Eyrele	Prapecto dn Sjempo perela Operihefrom	Load
mand	Nedes utare de Veord. Maps ieskaso per hiveseer	Load
Amrain		Load

Selected project

1- If you are logged and have projects in the OpenPlatform, the list of projects.
If you have purchased maps, the list of your purchased maps
2- The title and description of the project loaded
3- Buttons panel
4- Results of filters applied
5- Sun exposure data
6- The map
7- Bar graph with monthly sun exposure percentages
8- Form to record points
9- Output tab for environmental and consumption data
10- Output tab for results of radiation on areas
11- Output tab for results of radiation on points
12- Output tab for shadows chart
13- Record of points
14- Access to:
Atlas of radiation. Configuration File horizon. Configuration Extract of contributions of users to the map

Some features may not be available depending on the type of map
2. Loading and navigating the map

To load a map, follow one of the next options:

- Push the "explore maps" button and navigate through the world map. Click on the mark of the map you want to load

- If you have published maps using the OpenPlatform, a menu with your maps will be displayed at the top of the page. You can load your projects from there

My Projects (Click to show/hide)

Title	Description	This is an example project for the openplatform manual
Example Project	Núcleo urbano de Madrid. Mapa realizado por huellasolar	
Madrid	Núcleo urbano de Almería. Mapa realizado por huellasolar	Load
Almería		
Load		

- Likewise if you have purchased some pay-maps, a menu with your purchased projects will be displayed at the top of the page. You can load your projects from there

Once loaded you can navigate pan and zoom the map

3. Taking basic data

The map is displayed using a color scale representing the percentages of annual sun exposure:

To get data of sun exposure of any point in themap just click on the map. Data will be displayed inside the sun exposure table.

Sun exposure												D7
	Jan	Feb	Mar	Apr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dec
Daily sun hours	1	1	2	2	2	4	4	2	2	1	1	1
Daily shadow hours	8	9	9	10	11	10	10	11	10	10	9	8
Percentage of sun exposure	11.1	10.0	18.2	16.7	15.4	28.6	28.6	15.4	16.7	9.1	10.0	11.1
Annual percentage of sun exposure	16.7											
Annual average of hours of sun exposure	2											

The graph bar on the right of the map will be also actualized. This graph shows the percentage relation between sun exposure and shadows in the point for each month

4. Recording points

Use the form to record the sun exposure data of points and save them into a file. The record is displayed in the bottom of the page.

Longitude	Latitude		
-2.4566863	36.8479698		
Note (optional):			
Add a note			
	Register point		
	Save register		

Add a note to identify the point
Push the register button. Data will be added to the table at the bottom of the page

Push save to download the data in a text file Push clean to erase the register

RECORD OF POINTS											
Jan	Feb	Mar	Apr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dec
Note 1											
Longitude: -2.4553553			Latitude: $\mathbf{3 6 . 8 4 1 9 4 7 8}$			sun hours average: 3			Sun annual perc.: 27.5		
0	0	1	1	9	10	9	7	1	0	0	0
9	10	10	11	4	4	5	6	11	11	10	9
0.0	0.0	9.1	8.3	69.2	71.4	64.3	53.8	8.3	0.0	0.0	0.0
Note 2											
Longitude: -2.4543031			Latitude: $\mathbf{3 6 . 8 4 2 0 5 7 4}$			sun hours average: 6			Sun annual perc.: 51.4		
3	2	3	7	10	10	10	12	5	3	3	3
6	8	8	5	3	4	4	1	7	8	7	6
33.3	20.0	27.3	58.3	76.9	71.4	71.4	92.3	41.7	27.3	30.0	33.3

5. Applying filter of annual averages of sun exposure

This feature allows detect areas with annual averages of sun exposure below the value selected by user.

First select the value of hours of sun exposure from the selectable field and switch on the button:

Then click on the tile of the map you want to analyze. When calculations are over you will see overprinted in a white color those areas where the annual average of hours of sun exposure is below the selected value.

Additionally, under the button panel, information about percentages and total surfaces of the model matching with the filter will be displayed.

```
    A total area of \(22.6 \%\left(216960.0 \mathrm{~m}^{2}\right)\) match filter 1
\(4.8 \%\left(46090.0 \mathrm{~m}^{2}\right)\) is matching with builded area (or other mask applied)
```

Software makes distinction between the total area captured and areas inside the mask files defined when the map is generated. This mask files usually are used to define built areas. In that case you will have both the global area and the built areas matching with the filter. If the owner of the map didn't set up mask files no distinction is made.
6. Applying filter of monthly percentages of sun exposure

Use this filter to detect areas according to the monthly percentages of sun exposure.

Switch on the button

Magenta bars will appear over the graph of monthly sun percentages. Filter will detect areas where the percentage of shadows is inside the region defined by the magenta bars.

- To modify the range of the bars drag the mouse over the graph while press the shift key.
- You can also set the percentages with the buttons $\square \boxplus$

Once you are selected the range of values for each month, click on the tile of the map you want to analyze. When calculations are over you will see overprinted in a dark color those areas where the monthly percentages of shadows are inside the ranges defined.

Likewise the previous title information about percentages and total surfaces of the model matching with the filter will be displayed.

A total area of $22.77 \%\left(218592.0 \mathrm{~m}^{2}\right)$ match filter 2
Un $16.61 \%\left(159456.0 \mathrm{~m}^{2}\right)$ is matching with builded area (or other mask applied)

7. Analyzing areas of the model

Filters can be used to study areas delimited by user.
This way you can analyze specific areas like neighborhood

Follow these steps
a. Erase any previous filter applied turning off the buttons
\& and \square
b. Draw the perimeter of the area you want to check. Switch on the button and start to draw. Double click to close the polygon.

c. Once selected the area, switch off the button \quad to end the draw mode
d. Now you can apply filters as is explained in the sections above. The App will display information about surfaces matching with the filters inside the selected area.

Example:
In this image areas with an annual average of sun exposure below 10 hours/day and areas with less than a monthly percentage of 80% of hours of sun are highlighted using filters.

```
Inside the selected area a total of \(72.3 \%\left(41534.4 \mathrm{~m}^{2}\right)\) match fiter 1 \(14.7 \%\) ( \(8428.8 \mathrm{~m}^{2}\) ) is matching with builded area (or other mask applied)
```

Inside the selected area a total of $22.3 \%\left(12825.6 \mathrm{~m}^{2}\right)$ match filter 2

```
Un \(20.5 \%\left(11788.8 \mathrm{~m}^{2}\right)\) is matching with builded area (or other mask applied)
```

Selected area: $57409.286 \mathrm{~m}^{2}$

8. Getting data of radiation in points

Huellasolar viewer estimates radiation on any point in the map.
Direct, diffuse and global radiation in clear sky conditions is always displayed. Real sky conditions are offered in those maps where the owner of the data has correctly set up the real sky variables.

To estimate radiation data the app take into account the shape of the model, heights and projected shadows between buildings.

Switch on the buttonInclinación: 0 Azimut : 0

If you want to get data on a slant surface type the angle of inclination from 0° to 90° and the azimuth from -90° West to 90° East. 0° means south.

Click on the point of the map you want to get data.
Results will be displayed in a chart like the image below.

Content of the table:

1. Longitude, latitude, inclination and azimuth
2. Monthly data of radiation arranged by hours. (Sun time)

If cell is displayed like this: shadow It means that the point is shady as results of an obstacle.

If the value is null $\quad 0$ It means that as result of inclination and azimuth given, the point is not getting direct radiation.
3. Push the 'Save' button to download the data
4. Monthly total results. Kwh/m2
5. Annual total result. Kwh/m2
9. Getting data of radiation of areas

You can estimate radiation data for drawing areas.
To start drawing switch on the button:

Click on the map to add a edge.
Double click to close the polygon.
Information with the measure of the drawn area will be displayed under the button panel.

Push to start computing.
Results will be displayed under the map inside a graph and a table containing data of direct, diffuse and global radiation.

mathtimit Artas														
-7-														
Honth	$\begin{gathered} \text { Kadoe } \\ (\text { (xunhjidep) } \end{gathered}$	$\left.\begin{array}{\|c\|} \hline \text { Redich } \\ \text { (Xxin/idry) } \end{array} \right\rvert\,$	Deseeremplday	Radistion	Produstion	Fercentopes								
3 ln	42751	212939	22750											
Feb	42314	14.994	309705	200	Pirat									
16\%	708985	439038	<2cstl	400	\%									
apr	109865	576.00\%	S*6te9				?							
Mer	117, 10	511.385	cis 308											
3 n	traves	528.411	fataim	吅										
31	138 805	275.545	ATR.311	00										
Nos	138153	530.255	68865°	200										
Hep	$113+8$	495393	S0t 79											
Oct	78. 125	367398	35 58											
1 lar	59.38	27501	20.3E2	$1 \mathrm{l} \mathrm{c}^{4}$	ma	Nor	Nat	1un	29	A 2	5 ta	Oad	nog	De:
Des	42.735	272.041	220.004	Graphoat										
Tetal	1092546	St15,382	5537.630											

You can switch between three charts.

Direct, diffuse and global radiation

Power production and Co2 savings

Percentages of monthly radiation

10. Production and environmental data. Power production, Co2 savings, trees planted, homes supplied

App will automatically output environmental and consumption data when an area is computed.

If the option 'architectural integration' is checked, the App will consider PV panels aligned with the slope given in the inclination field. In this case panels cover the entire surface. (A percentage for joints is saved)

Otherwise App will consider panels over a horizontal surface set with the given inclination. In this case, the App will automatically estimate the interval between rows of panels and the number of panels fitting in the area.

In this process the ' H ' dimension given is taken as the side raising from the floor and the ' L ' value as the size horizontal to the floor.
You can modify fields and push to calculate again.
Notice that these values make reference to the last area checked with the function in the point 9 of this manual, therefore if you draw another area but don't estimate radiation on it, environmental data are still anchored to the previous area even if you recompute them.

11. Sharing data and contacting with companies

When radiation over any area is calculated, the app will give us the option to share the results in the map

DATA OF ENVIRONMENT AND CONSUMPTION

Pefformance: $\overline{0.702}$ Peak power panel(w): 230	L panel(m): 1.7	H panel(m): 1	€/Kwh: 0.149	Integ archit: \square
Estimate of the annual production of electric	power:			11409.52 Kwh/year
It would become in a monetary savings of:				1700.02euro/year
Savings of Coz emissions:				6.85 T/year
This is equivalent to plant:				42 trees
It could supplied around:				3.5 homes

Data offered for guidance only, (How it works)

Join the map I \bigcirc my Energy!

Upload to map

To share data push the button 'Upload to map'. A dialog with data to save will be displayed.
Additionally we have the possibility to select that related companies may contact us and make an assessment or provide a budget.

Upload data to the map

Once the data are loaded into the map a mark will appear. Click on it to retrieve the data.

You can show/hide the marks clicking on the button
Open a briefing of all the contributions in the map clicking on the button \square in the right lower corner of the screen.

12. Radiation over facades or vertical planes

App is able to work both in horizontal and vertical planes. You can generate maps of radiation on vertical planes, which is useful to study facades or any other vertical plane in the city.

Generated charts are interactive and you can use explained on them some of functions explained in this guide:

- Sun exposure data on points. (Section 4)
- Radiation data on points.(Section 8)
- Radiation data for areas. (Section 9)
- Environmental data.(Section 10)

To work on vertical planes follow the next steps:
a. First you must draw the line defining the projection of the vertical plane. For example, if you want to study a facade draw a line in front of it.

- Switch on the button:

This will start the drawing mode

- Draw a line on the map corresponding to the projection of the vertical plane.

b. Once the line is finished a message requiring additional information will be displayed

- Select which face of the plane want you to calculate
- Type a mail where you want to be notified once calculations are finished.
- To start processing push the button 'Ok'

App will process the model around the defined plane computing projected shadows along the year and will build the sun exposure map and associate data.

Once the form is sent you can continue navigation or close the explorer if you wish.
c. After few minutes check your mail. You will have received a mail containing a link to access the results.

Now you have the radiation chart for the vertical plane and can get radiation and sun exposure data using the features explained in this manual.

Note:

- This feature is available for lengths up to 70 m and heights up to 35 m .

13. Horizon files

You can use horizon files that the app will take into account when shadows are computing.
This way you can introduce additional obstacles like antennas, or any other element.
You can generate an horizon file with a text editor. Every line must contain a pair of coordinates (azimuth, height) in grades.
Points must draw a closed polygon, otherwise the app will automatically join first and last points.
Examples:
File
$-180.0,0$
$-180.000,60$
$180.0000,60.0000$
$180.0,0$

To use horizon files follow these steps.
Push the button to display the configuration tab:

Use the form to select your file. Must be a txt file formatted as above.

Once the file is selected the graph defined by the txt will be shown.

When is active, the horizon file is take into account to estimate shadows.
Nevertheless, horizon files don't deactivate the rest of checking made according to the geometry of the model.

14. Chart of shadows

This chart represents the projected shadows on the selected point. It displays, in abscissas the horizontal angle around the point and in ordinates the solar angle, therefore the line of the chart represents the vertical angle where the point change from a situation of shadows to a situation of sun exposure. It is useful, for example for studies of facades.

Switch on the button and click on the point to represent.
For example, if you want to get the shadows chart for a facade, click just in front of it. Notice that if the point is too close to the building, the system can take the point in the roof point.

After few seconds the chart will be shown as in the image:

To obtain the graph, the app scans all the obstacles around the point in an extension of 2 Km from the point.

1. Change the elevation over the ground level and push the recompute button. This way you can get the chart in different elevations in the same point
2. Select print to get a report.
3. Graduate the data step
4. Printing

The print button opens a formatted page with a report including the map, results of filters applied and some additional data

Content of the report:

1. The map
2. Coordinates of the extension of the map
3. Record of points
4. List of tiles and results of the filter of sun exposure averages.
5. Idem for the filter of monthly sun exposure
6. If there is area selected, the results of filters inside the area

PLUGIN ATLAS OF RADIATION

The atlas of radiation offers a full range of information and graphical outputs for the study of the global capabilities of the model.
It also includes maps of radiation for every month.

1. Monthly radiation maps

Switch between sun exposure and radiation maps.
Select the month to display its radiation map.

Radiation maps of the atlas represent in $\mathrm{Kwh} / \mathrm{m} 2$ the radiation for the selected month.

1. Click on any point and a tag with radiation value for the point will be displayed.
2. Push to close the tag $^{\text {to }}$
3. Color scale used in the map
4. Setting up the atlas

The plug-in Atlas of radiation offers configurable graphical outputs
To open the options dialog push the buttonin the right lower corner in the screen.

The following dialog will be displayed:

Available options:

2.1. Overprinting areas with less than 15% of annual shadows

This option allows overprint areas with an annual percentage of shadows below 15\%.
You can select to show the whole model or by tiles, in this case click over the tile to overprint data.

Example: Radiation map for the month of July. A tile is overprinted with areas with annual shadows under 15%.

2.2. Chart of Power production and co2 estimations

Check this option to display a chart with information about the photovoltaic production and Co2 savings in the model.

This function estimates over areas with less than 15% of annual shadows.

Notes:

- Chart can be zoomed and dragged
- You can switch between chart and table of data You can download data in a CSV file.

Idem for the whole model

2.3. Chart of average values of global radiation (Kwh/m2día)

This chart gives a general vision of the average radiation for the whole model.
There is two series of data, global radiation and direct + diffuse radiation.
You can choose to show data for all the building area or only for areas with less than 15% of annual shadows

2.4. Chart of monthly percentages of global radiation

Check this option to show a chart with a monthly distribution of values of percentages of global radiation.

2.5. Chart of monthly values of global radiation

This chart offers total values of global radiation for each tile in the model and the radiated surface. You can choose to show data for all the building area or only for areas with less than 15% of annual shadows

